z-logo
open-access-imgOpen Access
$ \bar{\partial} $-equation look at analytic Hilbert's zero-locus theorem
Author(s) -
Xiaofen Lv,
J. Xiao,
Cheng Yuan
Publication year - 2021
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.009
Subject(s) - mathematics , blaschke product , fock space , pure mathematics , zero (linguistics) , mathematical physics , mathematical analysis , physics , quantum mechanics , philosophy , linguistics
Stemming from the Pythagorean Identity $ \sin^2z+\cos^2z = 1 $ and Hörmander's $ L^2 $-solution of the Cauchy-Riemann's equation $ \bar{\partial}u = f $ on $ \mathbb C $, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on $ \mathbb C $ to the quadratic Fock-Sobolev spaces on $ \mathbb C $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom