z-logo
open-access-imgOpen Access
Atmospheric transport and mixing of biological soil crust microorganisms
Author(s) -
Steven D. Warren,
Larry L. St. Clair
Publication year - 2021
Publication title -
aims environmental science
Language(s) - English
Resource type - Journals
eISSN - 2372-0352
pISSN - 2372-0344
DOI - 10.3934/environsci.2021032
Subject(s) - propagule , microorganism , environmental science , algae , biology , ecology , bacteria , genetics
Biological soil crusts (BSCs) are created where a diverse array of microorganisms colonize the surface and upper few millimeters of the soil and create a consolidated crust. They were originally described from arid ecosystems where vascular vegetation is naturally sparse or absent. They have since been discovered in all terrestrial ecosystems. Where present, they perform a variety of important ecological functions, including the capture and accumulation of water and essential plant nutrients, and their release in forms useful to vascular plants. They also stabilize the soil surface against wind and water erosion. BSC organisms include fungi (free-living, lichenized, and mycorrhizal), archaea, bacteria (cyanobacteria and chemotrophic and diazotrophic bacteria), terrestrial algae (including diatoms), and bryophytes (mosses and worts). BSC organisms reproduce primarily asexually via thallus or main body fragmentation or production of asexual spores that are readily dispersed by water and wind. Asexual and sexual propagules of BSC organisms are commonly lifted into the air with vast quantities of dust from the world's arid areas. BSC organisms and/or their propagules have been detected as high as the stratosphere. Some have also been detected in the mesosphere. Airborne dust, microorganisms, and their propagules contribute to the formation of essential raindrop and snowflake nuclei that, in turn, facilitate precipitation events. While airborne in the atmosphere, they also reflect the sun's rays passing laterally through the troposphere and stratosphere at dawn and dusk, often causing brilliant colors at sunrise and sunset.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here