z-logo
open-access-imgOpen Access
Boundedness of solutions in a quasilinear chemo-repulsion system with nonlinear signal production
Author(s) -
Runlin Hu,
Pan Zheng,
Zhangqin Gao
Publication year - 2022
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2022018
Subject(s) - nabla symbol , homogeneous , combinatorics , omega , bounded function , domain (mathematical analysis) , production (economics) , physics , mathematics , mathematical analysis , quantum mechanics , economics , macroeconomics
This paper deals with a quasilinear parabolic-elliptic chemo-repulsion system with nonlinear signal production\begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} & u_t = \nabla\cdot(\phi(u)\nabla u)+\chi\nabla\cdot(u(u+1)^{\alpha-1}\nabla v)+f(u), & (x,t)\in \Omega\times (0,\infty), \\ & 0 = \Delta v-v+u^{\beta}, & (x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $\end{document}under homogeneous Neumann boundary conditions in a smoothly bounded domain \begin{document}$ \Omega \subset \mathbb{R}^{n}(n\geq1), $\end{document} where \begin{document}$ \chi,\beta>0,\alpha\in\mathbb{R}, $\end{document} the nonlinear diffusion \begin{document}$ \phi\in C^{2}([0,\infty)) $\end{document} satisfies \begin{document}$ \phi(u)\geq(u+1)^{m} $\end{document} with \begin{document}$ m\in\mathbb{R}, $\end{document} and the function \begin{document}$ f\in C^{1}([0,\infty)) $\end{document} is a generalized growth term. \begin{document}$ \bullet $\end{document} When \begin{document}$ f\equiv0, $\end{document} it is shown that the solution of the above system is global and uniformly bounded for all \begin{document}$ \chi,\beta>0 $\end{document} and \begin{document}$ m,\alpha\in\mathbb{R} $\end{document} . \begin{document}$ \bullet $\end{document} When \begin{document}$ f\not\equiv0 $\end{document} and assume that \begin{document}$ f(u)\leq ku-bu^{\gamma+1} $\end{document} with \begin{document}$ k,b,\gamma>0, $\end{document} it is proved that the solution of the above system is also global and uniformly bounded for all \begin{document}$ \chi,\beta>0 $\end{document} and \begin{document}$ m,\alpha\in\mathbb{R}. $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom