z-logo
open-access-imgOpen Access
Two simple criterion to obtain exact controllability and stabilization of a linear family of dispersive PDE's on a periodic domain
Author(s) -
Francisco J. Vielma Leal,
Ademir Pastor
Publication year - 2021
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2021062
Subject(s) - controllability , mathematics , order (exchange) , simple (philosophy) , domain (mathematical analysis) , combinatorics , mathematical analysis , mathematical physics , philosophy , finance , epistemology , economics
In this work, we use the classical moment method to find a practical and simple criterion to determine if a family of linearized Dispersive equations on a periodic domain is exactly controllable and exponentially stabilizable with any given decay rate in \begin{document}$ H_{p}^{s}(\mathbb{T}) $\end{document} with \begin{document}$ s\in \mathbb{R}. $\end{document} We apply these results to prove that the linearized Smith equation, the linearized dispersion-generalized Benjamin-Ono equation, the linearized fourth-order Schrödinger equation, and the Higher-order Schrödinger equations are exactly controllable and exponentially stabilizable with any given decay rate in \begin{document}$ H_{p}^{s}(\mathbb{T}) $\end{document} with \begin{document}$ s\in \mathbb{R}. $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom