
Two simple criterion to obtain exact controllability and stabilization of a linear family of dispersive PDE's on a periodic domain
Author(s) -
Francisco J. Vielma Leal,
Ademir Pastor
Publication year - 2022
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2021062
Subject(s) - controllability , mathematics , order (exchange) , simple (philosophy) , domain (mathematical analysis) , combinatorics , mathematical analysis , mathematical physics , philosophy , finance , epistemology , economics
In this work, we use the classical moment method to find a practical and simple criterion to determine if a family of linearized Dispersive equations on a periodic domain is exactly controllable and exponentially stabilizable with any given decay rate in \begin{document}$ H_{p}^{s}(\mathbb{T}) $\end{document} with \begin{document}$ s\in \mathbb{R}. $\end{document} We apply these results to prove that the linearized Smith equation, the linearized dispersion-generalized Benjamin-Ono equation, the linearized fourth-order Schrödinger equation, and the Higher-order Schrödinger equations are exactly controllable and exponentially stabilizable with any given decay rate in \begin{document}$ H_{p}^{s}(\mathbb{T}) $\end{document} with \begin{document}$ s\in \mathbb{R}. $\end{document}