Linear subdiffusion in weighted fractional Hölder spaces
Author(s) -
Mykola Krasnoschok,
Nataliya Vasylyeva
Publication year - 2021
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2021050
Subject(s) - mathematics , combinatorics , arithmetic
For \begin{document}$ \nu\in(0,1) $\end{document} , we investigate the nonautonomous subdiffusion equation:\begin{document}$ \mathbf{D}_{t}^{\nu}u-\mathcal{L}u = f(x,t), $\end{document}where \begin{document}$ \mathbf{D}_{t}^{\nu} $\end{document} is the Caputofractional derivative and \begin{document}$ \mathcal{L} $\end{document} is a uniformly ellipticoperator with smooth coefficients depending on time. Undersuitable conditions on the given data and a minimal number (i.e.the necessary number) of compatibility conditions, the globalclassical solvability to the related initial-boundary valueproblems are established in the weighted fractional Hölderspaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom