
Linear subdiffusion in weighted fractional Hölder spaces
Author(s) -
Mykola Krasnoschok,
Nataliya Vasylyeva
Publication year - 2022
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2021050
Subject(s) - mathematics , combinatorics , arithmetic
For \begin{document}$ \nu\in(0,1) $\end{document} , we investigate the nonautonomous subdiffusion equation:\begin{document}$ \mathbf{D}_{t}^{\nu}u-\mathcal{L}u = f(x,t), $\end{document}where \begin{document}$ \mathbf{D}_{t}^{\nu} $\end{document} is the Caputofractional derivative and \begin{document}$ \mathcal{L} $\end{document} is a uniformly ellipticoperator with smooth coefficients depending on time. Undersuitable conditions on the given data and a minimal number (i.e.the necessary number) of compatibility conditions, the globalclassical solvability to the related initial-boundary valueproblems are established in the weighted fractional Hölderspaces.