Internal control for a non-local Schrödinger equation involving the fractional Laplace operator
Author(s) -
Umberto Biccari
Publication year - 2021
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2021014
Subject(s) - mathematics , bounded function , omega , combinatorics , domain (mathematical analysis) , dimension (graph theory) , physics , mathematical analysis , quantum mechanics
We analyze the interior controllability problem for a non-local Schrödinger equation involving the fractional Laplace operator \begin{document}$ (-\Delta)^{\, {s}}{} $\end{document} , \begin{document}$ s\in(0, 1) $\end{document} , on a bounded \begin{document}$ C^{1, 1} $\end{document} domain \begin{document}$ \Omega\subset{\mathbb{R}}^N $\end{document} . We first consider the problem in one space dimension and employ spectral techniques to prove that, for \begin{document}$ s\in[1/2, 1) $\end{document} , null-controllability is achieved through an \begin{document}$ L^2(\omega\times(0, T)) $\end{document} function acting in a subset \begin{document}$ \omega\subset\Omega $\end{document} of the domain. This result is then extended to the multi-dimensional case by applying the classical multiplier method, joint with a Pohozaev-type identity for the fractional Laplacian.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom