$ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations
Author(s) -
Mičhal Fĕckan,
Kui Liu,
JinRong Wang
Publication year - 2021
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2021006
Subject(s) - omega , mathematics , uniqueness , banach space , isomorphism (crystallography) , combinatorics , operator (biology) , discrete mathematics , mathematical analysis , physics , crystallography , biochemistry , chemistry , quantum mechanics , repressor , transcription factor , crystal structure , gene
In this paper, we study \begin{document}$ (\omega,\mathbb{T}) $\end{document} -periodic impulsive evolution equations via the operator semigroups theory in Banach spaces \begin{document}$ X $\end{document} , where \begin{document}$ \mathbb{T}: X\rightarrow X $\end{document} is a linear isomorphism. Existence and uniqueness of \begin{document}$ (\omega,\mathbb{T}) $\end{document} -periodic solutions results for linear and semilinear problems are obtained by Fredholm alternative theorem and fixed point theorems, which extend the related results for periodic impulsive differential equations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom