A canonical model of the one-dimensional dynamical Dirac system with boundary control
Author(s) -
Μ. I. Belishev,
Sergey Simonov
Publication year - 2021
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 19
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2021003
Subject(s) - combinatorics , mathematics , physics
The one-dimensional Dirac dynamical system \begin{document}$ \Sigma $\end{document} is\begin{document}$ \begin{align*} & iu_t+i\sigma_{\!_3}\, u_x+Vu = 0, \, \, \, \, x, t>0;\, \, \, u|_{t = 0} = 0, \, \, x>0;\, \, \, \, u_1|_{x = 0} = f, \, \, t>0, \end{align*} $\end{document}where \begin{document}$ \sigma_{\!_3} = \begin{pmatrix}1&0 \\ 0&-1\end{pmatrix} $\end{document} is the Pauli matrix; \begin{document}$ V = \begin{pmatrix}0&p\\ \bar p&0\end{pmatrix} $\end{document} with \begin{document}$ p = p(x) $\end{document} is a potential; \begin{document}$ u = \begin{pmatrix}u_1^f(x, t) \\ u_2^f(x, t)\end{pmatrix} $\end{document} is the trajectory in \begin{document}$ \mathscr H = L_2(\mathbb R_+;\mathbb C^2) $\end{document} ; \begin{document}$ f\in\mathscr F = L_2([0, \infty);\mathbb C) $\end{document} is a boundary control. System \begin{document}$ \Sigma $\end{document} is not controllable: the total reachable set \begin{document}$ \mathscr U = {\rm span}_{t>0}\{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $\end{document} is not dense in \begin{document}$ \mathscr H $\end{document} , but contains a controllable part \begin{document}$ \Sigma_u $\end{document} . We construct a dynamical system \begin{document}$ \Sigma_a $\end{document} , which is controllable in \begin{document}$ L_2(\mathbb R_+;\mathbb C) $\end{document} and connected with \begin{document}$ \Sigma_u $\end{document} via a unitary transform. The construction is based on geometrical optics relations: trajectories of \begin{document}$ \Sigma_a $\end{document} are composed of jump amplitudes that arise as a result of projecting in \begin{document}$ \overline{\mathscr U} $\end{document} onto the reachable sets \begin{document}$ \mathscr U^t = \{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $\end{document} . System \begin{document}$ \Sigma_a $\end{document} , which we call the amplitude model of the original \begin{document}$ \Sigma $\end{document} , has the same input/output correspondence as system \begin{document}$ \Sigma $\end{document} . As such, \begin{document}$ \Sigma_a $\end{document} provides a canonical completely reachable realization of the Dirac system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom