z-logo
open-access-imgOpen Access
A proof of a Dumortier-Roussarie's conjecture
Author(s) -
Chengzhi Li,
Changjian Liu
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022095
Subject(s) - conjecture , abelian group , mathematics , codimension , combinatorics , upper and lower bounds , limit (mathematics) , diophantine equation , pure mathematics , mathematical analysis
Dumortier and Roussarie proposed a conjecture in their paper (2009, Discrete Con. Dyn. Sys., 2,723-781): For any \begin{document}$ q\in {\mathbb{N}} $\end{document} , the Abelian integrals \begin{document}$ J_{2j+1}(h) = \int_{\gamma_h}x^{2j-1}\,\mathrm dy $\end{document} , \begin{document}$ j = 0, 1, 2, \cdots, q $\end{document} , form a strict Chebyshev system on intervals \begin{document}$ h\in (0, \frac{1}{2}] $\end{document} , where \begin{document}$ \gamma_h = \{(x, y)| \mathrm e^{-2y}(y+\frac{1}{2}-x^2) = h\} $\end{document} . If this conjecture holds, then they obtain the precise upper bound of the number of limit cycles that appear near a slow-fast Hopf point of any codimension. In the present paper we develop a method to estimate the number of zeros of Abelian integrals and prove this conjecture.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom