
About the stability to Timoshenko system with pointwise dissipation
Author(s) -
Jaime E. Muñoz Rivera,
Maria Grazia Naso
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series s
Language(s) - English
Resource type - Journals
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022078
Subject(s) - pointwise , mathematics , combinatorics , arithmetic , mathematical analysis
In this paper we study the Timoshenko model over the interval \begin{document}$ (0, \ell) $\end{document} with pointwise dissipation at \begin{document}$ \xi\in (0, \ell) $\end{document} . We prove that this dissipation produces exponential stability when \begin{document}$ \xi\in \mathbb{Q}\ell $\end{document} and \begin{document}$ \xi\ne \frac{n}{2m+1} $\end{document} , where \begin{document}$ n, m\in \mathbb{N} $\end{document} and \begin{document}$ n $\end{document} , and \begin{document}$ 2m+1 $\end{document} are co-prime.