$ \Sigma $-shaped bifurcation curves for classes of elliptic systems
Author(s) -
Ananta Acharya,
R. Shivaji,
Nalin Fonseka
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022067
Subject(s) - combinatorics , omega , mathematics , domain (mathematical analysis) , arithmetic , physics , mathematical analysis , quantum mechanics
We study positive solutions to classes of steady state reaction diffusion systems of the form:\begin{document}$ \begin{equation*} \left\lbrace \begin{matrix}-\Delta u = \lambda f(v) ;\; \Omega\\ -\Delta v = \lambda g(u) ;\; \Omega\\ \frac{\partial u}{\partial \eta}+\sqrt{\lambda} u = 0; \; \partial \Omega\\ \frac{\partial v}{\partial \eta}+\sqrt{\lambda}v = 0; \; \partial \Omega\ \end{matrix} \right. \end{equation*} $\end{document}where \begin{document}$ \lambda>0 $\end{document} is a positive parameter, \begin{document}$ \Omega $\end{document} is a bounded domain in \begin{document}$ \mathbb{R}^N $\end{document} ; \begin{document}$ N > 1 $\end{document} with smooth boundary \begin{document}$ \partial \Omega $\end{document} or \begin{document}$ \Omega = (0, 1) $\end{document} , \begin{document}$ \frac{\partial z}{\partial \eta} $\end{document} is the outward normal derivative of \begin{document}$ z $\end{document} . Here \begin{document}$ f, g \in C^2[0, r) \cap C[0, \infty) $\end{document} for some \begin{document}$ r>0 $\end{document} . Further, we assume that \begin{document}$ f $\end{document} and \begin{document}$ g $\end{document} are increasing functions such that \begin{document}$ f(0) = 0 = g(0) $\end{document} , \begin{document}$ f'(0) = g'(0) = 1 $\end{document} , \begin{document}$ f''(0)>0, g''(0)>0 $\end{document} , and \begin{document}$ \lim\limits_{s \rightarrow \infty} \frac{f(Mg(s))}{s} = 0 $\end{document} for all \begin{document}$ M>0 $\end{document} . Under certain additional assumptions on \begin{document}$ f $\end{document} and \begin{document}$ g $\end{document} we prove that the bifurcation diagram for positive solutions of this system is at least \begin{document}$ \Sigma- $\end{document} shaped. We also discuss an example where \begin{document}$ f $\end{document} is sublinear at \begin{document}$ \infty $\end{document} and \begin{document}$ g $\end{document} is superlinear at \begin{document}$ \infty $\end{document} which satisfy our hypotheses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom