z-logo
open-access-imgOpen Access
Random uniform exponential attractors for Schrödinger lattice systems with quasi-periodic forces and multiplicative white noise
Author(s) -
Sijia Zhang,
Shengfan Zhou
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022056
Subject(s) - attractor , mathematics , white noise , bounded function , random compact set , random element , multiplicative function , exponential function , multiplicative noise , lipschitz continuity , lattice (music) , mathematical analysis , statistical physics , random variable , physics , computer science , statistics , signal transfer function , digital signal processing , acoustics , analog signal , computer hardware
We mainly consider the existence of random uniform exponential attractors for Schrödinger lattice systems with quasi-periodic forces and multiplicative white noise. We first give an existence criterion for a random uniform exponential attractor for a jointly continuous non-autonomous random dynamical system (NRDS) defined on the space of infinite sequences with complex-valued components. Then we transfer the considered stochastic Schrödinger lattice system into a random system with random parameters and quasi-periodic forces without white noise through Ornstein-Uhlenbeck process, whose solutions generate a jointly continuous NRDS. Thirdly, we prove the existence of a uniform absorbing random set for this NRDS. Fourthly, we construct a bounded closed random set and verify the Lipschitz continuity of the NRDS on this random set, and next we decompose the difference between two solutions into a sum of two parts including some random variables with bounded expectation. Finally, we obtain the existence of a random uniform exponential attractor for the considered system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom