
Mathematical model for simulation of morphological changes associated to crypt fission in the colon
Author(s) -
Giuseppe Romanazzi,
Giuseppina Settanni
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series s
Language(s) - English
Resource type - Journals
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022055
Subject(s) - crypt , fission , differential equation , physics , chemistry , mechanics , mathematics , computer science , mathematical analysis , nuclear physics , neutron , computer security
Morphological changes due to colorectal cancer propagation by an abnormal crypt fission is an interesting application arising in medicine and biology, that we try to analyse by a differential equations model coupled with a discrete crypt fission model. A colonic crypt can slowly change its shape in three steps: growth, bifurcation and fission. Fission is a rare event in a normal tissue, however if transit cells are unable to differentiate, due to an activation of Wnt signaling, then it may become fast and uncontrolled and cause a formation of aberrant crypt foci (ACF), defined as clusters of aberrant crypts. The differential equation system is composed by a convective diffusive equation for transit cell density and an elliptic equation for cell pressure, both defined on a manifold. The discrete crypt fission model acts in a set of adjacent crypts in order to investigate the ACF dynamics, due to a differentiation block. By using a Galerkin finite element method we solve numerically the differential equation model and show some interesting results about an ACF formation caused by a deformation and fission of abnormal crypts.