
Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling
Author(s) -
Filippo Dell’Oro,
Marcio A. Jorge Silva,
Sandro B. Pinheiro
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022050
Subject(s) - thermoelastic damping , dirichlet distribution , mathematical analysis , coupling (piping) , mathematics , boundary value problem , stability (learning theory) , dirichlet boundary condition , physics , thermal , materials science , thermodynamics , composite material , computer science , machine learning
We analyze the stability properties of a linear thermoelastic Timoshenko-Gurtin-Pipkin system with thermal coupling acting on both the shear force and the bending moment. Under either the mixed Dirichlet-Neumann or else the full Dirichlet boundary conditions, we show that the associated solution semigroup in the history space framework of Dafermos is exponentially stable independently of the values of the structural parameters of the model.