z-logo
open-access-imgOpen Access
On some qualitative aspects for doubly nonlocal equations
Author(s) -
Silvia Cingolani,
Marco Gallo
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022041
Subject(s) - mathematics , combinatorics , type (biology) , algebra over a field , pure mathematics , ecology , biology
In this paper we investigate some qualitative properties of the solutions to the following doubly nonlocal equation\begin{document}$\begin{equation} \label{eq_abstract} (- \Delta)^s u + \mu u = (I_\alpha*F(u))F'(u) \quad \text{in } \mathbb{R}^N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(P)}\end{equation} $\end{document}where \begin{document}$ N \geq 2 $\end{document} , \begin{document}$ s\in (0, 1) $\end{document} , \begin{document}$ \alpha \in (0, N) $\end{document} , \begin{document}$ \mu>0 $\end{document} is fixed, \begin{document}$ (-\Delta)^s $\end{document} denotes the fractional Laplacian and \begin{document}$ I_{\alpha} $\end{document} is the Riesz potential. Here \begin{document}$ F \in C^1(\mathbb{R}) $\end{document} stands for a general nonlinearity of Berestycki-Lions type. We obtain first some regularity result for the solutions of (P). Then, by assuming \begin{document}$ F $\end{document} odd or even and positive on the half-line, we get constant sign and radial symmetry of the Pohozaev ground state solutions related to equation (P). In particular, we extend some results contained in [ 23 ]. Similar qualitative properties of the ground states are obtained in the limiting case \begin{document}$ s = 1 $\end{document} , generalizing some results by Moroz and Van Schaftingen in [ 52 ] when \begin{document}$ F $\end{document} is odd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom