z-logo
open-access-imgOpen Access
Thermoelasticity with antidissipation
Author(s) -
Monica Conti,
Lorenzo Liverani,
Vittorino Pata
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022040
Subject(s) - mathematics , arithmetic , combinatorics
We provide a complete stability analysis for the abstract differential system made by an antidamped wave-type equation, coupled with a dissipative heat-type equation\begin{document}$ \begin{cases} u_{tt} + A u -\gamma u_t = p A^{\alpha} \theta \\ \theta_{t} + \kappa A^{\beta} \theta = - p A^{\alpha} u_t \end{cases} $\end{document}where \begin{document}$ A $\end{document} is a strictly positive selfadjoint operator on a Hilbert space, \begin{document}$ \gamma, \kappa>0 $\end{document} , and both the parameters \begin{document}$ \alpha $\end{document} and \begin{document}$ \beta $\end{document} can vary between \begin{document}$ 0 $\end{document} and \begin{document}$ 1 $\end{document} . The asymptotic properties of the associated solution semigroup are determined by the strength of the coupling, as well as the quantitative balance between the antidamping \begin{document}$ \gamma $\end{document} and the damping \begin{document}$ \kappa $\end{document} . Depending on the value of \begin{document}$ (\alpha, \beta) $\end{document} in the unit square, one of the following mutually disjoint situations can occur: either the related semigroup decays exponentially fast, or all the solutions vanish but not uniformly, or there exists a trajectory whose norm blows up exponentially fast as \begin{document}$ t\to\infty $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom