z-logo
open-access-imgOpen Access
Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping
Author(s) -
ZhongJie Han,
Zhuangyi Liu,
Jing Wang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2022031
Subject(s) - physics , mathematics , combinatorics , arithmetic
This paper is on the asymptotic behavior of the elastic string equation with localized Kelvin-Voigt damping\begin{document}$ u_{tt}(x, t)-[u_{x}(x, t)+b(x)u_{x, t}(x, t)]_{x} = 0, \; x\in(-1, 1), \; t>0, $\end{document}where \begin{document}$ b(x) = 0 $\end{document} on \begin{document}$ x\in (-1, 0] $\end{document} , and \begin{document}$ b(x) = a(x)>0 $\end{document} on \begin{document}$ x\in (0, 1) $\end{document} . It is known that the Geometric Optics Condition for exponential stability does not apply to Kelvin-Voigt damping. Under the assumption that \begin{document}$ a'(x) $\end{document} has a singularity at \begin{document}$ x = 0 $\end{document} , we investigate the decay rate of the solution which depends on the order of the singularity. When \begin{document}$ a(x) $\end{document} behaves like \begin{document}$ x^{\alpha}(-\log x)^{-\beta} $\end{document} near \begin{document}$ x = 0 $\end{document} for \begin{document}$ 0\le{\alpha}<1, \;0\le\beta $\end{document} or \begin{document}$ 0<{\alpha}<1, \;\beta<0 $\end{document} , we show that the system can achieve a mixed polynomial-logarithmic decay rate. As a byproduct, when \begin{document}$ \beta = 0 $\end{document} , we obtain the decay rate \begin{document}$ t^{-\frac{ 3-\alpha-\varepsilon}{2(1-{\alpha})}} $\end{document} of solution for arbitrarily small \begin{document}$ \varepsilon>0 $\end{document} , which improves the rate \begin{document}$ t^{-\frac{1}{1-{\alpha}}} $\end{document} obtained in [ 14 ]. The new rate is again consistent with the exponential decay rate in the limit case \begin{document}$ \alpha\to 1^- $\end{document} . This is a step toward the goal of obtaining the optimal decay rate eventually.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here