A mathematical study of diffusive logistic equations with mixed type boundary conditions
Author(s) -
Kazuaki Taira
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021166
Subject(s) - mathematics , logistic function , population , boundary value problem , type (biology) , eigenvalues and eigenvectors , bifurcation , diffusion , class (philosophy) , mathematical analysis , partial differential equation , mathematical economics , calculus (dental) , nonlinear system , statistics , computer science , physics , thermodynamics , demography , medicine , ecology , dentistry , quantum mechanics , artificial intelligence , sociology , biology
The purpose of this paper is to provide a careful and accessible exposition of static bifurcation theory for a class of mixed type boundary value problems for diffusive logistic equations with indefinite weights, which model population dynamics in environments with spatial heterogeneity. We discuss the changes that occur in the structure of the positive solutions as a parameter varies near the first eigenvalue of the linearized problem, and prove that the most favorable situations will occur if there is a relatively large favorable region (with good resources and without crowding effects) located some distance away from the boundary of the environment. A biological interpretation of main theorem is that an initial population will grow exponentially until limited by lack of available resources if the diffusion rate is below some critical value; this idea is generally credited to the English economist T. R. Malthus. On the other hand, if the diffusion rate is above this critical value, then the model obeys the logistic equation introduced by the Belgian mathematical biologist P. F. Verhulst. The approach in this paper is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in partial differential equations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom