Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity
Author(s) -
Mingqi Xiang,
Die Hu
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021125
Subject(s) - mathematics , combinatorics , type (biology) , arithmetic , ecology , biology
In this paper, we deal with the initial boundary value problem of the following fractional wave equation of Kirchhoff type\begin{document}$ \begin{align*} u_{tt}+M([u]_{\alpha, 2}^2)(-\Delta)^{\alpha}u+(-\Delta)^{s}u_{t} = \int_{0}^{t}g(t-\tau)(-\Delta)^{\alpha}u(\tau)d\tau+\lambda|u|^{q -2}u, \end{align*} $\end{document}where \begin{document}$ M:[0, \infty)\rightarrow (0, \infty) $\end{document} is a nondecreasing and continuous function, \begin{document}$ [u]_{\alpha, 2} $\end{document} is the Gagliardo-seminorm of \begin{document}$ u $\end{document} , \begin{document}$ (-\Delta)^\alpha $\end{document} and \begin{document}$ (-\Delta)^s $\end{document} are the fractional Laplace operators, \begin{document}$ g:\mathbb{R}^+\rightarrow \mathbb{R}^+ $\end{document} is a positive nonincreasing function and \begin{document}$ \lambda $\end{document} is a parameter. First, the local and global existence of solutions are obtained by using the Galerkin method. Then the global nonexistence of solutions is discussed via blow-up analysis. Our results generalize and improve the existing results in the literature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom