z-logo
open-access-imgOpen Access
Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $
Author(s) -
Yang Liu,
Chunyou Sun
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021124
Subject(s) - mathematics , type (biology) , combinatorics , ecology , biology
In this paper, for the damped generalized incompressible Navier-Stokes equations on \begin{document}$ \mathbb{T}^{2} $\end{document} as the index \begin{document}$ \alpha $\end{document} of the general dissipative operator \begin{document}$ (-\Delta)^{\alpha} $\end{document} belongs to \begin{document}$ (0,\frac{1}{2}] $\end{document} , we prove the absence of anomalous dissipation of the long time averages of entropy. We also give a note to show that, by using the \begin{document}$ L^{\infty} $\end{document} bounds given in Caffarelli et al. [ 4 ], the absence of anomalous dissipation of the long time averages of energy for the forced SQG equations established in Constantin et al. [ 12 ] still holds under a slightly weaker conditions \begin{document}$ \theta_{0}\in L^{1}(\mathbb{R}^{2})\cap L^{2}(\mathbb{R}^{2}) $\end{document} and \begin{document}$ f \in L^{1}(\mathbb{R}^{2})\cap L^{p}(\mathbb{R}^{2}) $\end{document} with some \begin{document}$ p>2 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom