z-logo
open-access-imgOpen Access
$ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values
Author(s) -
Junjie Zhang,
Shenzhou Zheng,
Chunyan Zuo
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021080
Subject(s) - mathematics , bounded function , combinatorics , mathematical analysis
We prove a global \begin{document}$ W^{2, p} $\end{document} -estimate for the viscosity solution to fully nonlinear elliptic equations \begin{document}$ F(x, u, Du, D^{2}u) = f(x) $\end{document} with oblique boundary condition in a bounded \begin{document}$ C^{2, \alpha} $\end{document} -domain for every \begin{document}$ \alpha\in (0, 1) $\end{document} . Here, the nonlinearities \begin{document}$ F $\end{document} is assumed to be asymptotically \begin{document}$ \delta $\end{document} -regular to an operator \begin{document}$ G $\end{document} that is \begin{document}$ (\delta, R) $\end{document} -vanishing with respect to \begin{document}$ x $\end{document} . We employ the approach of constructing a regular problem by an appropriate transformation. With a similar argument, we also obtain a global \begin{document}$ W^{2, p} $\end{document} -estimate for the viscosity solution to fully nonlinear parabolic equations \begin{document}$ F(x, t, u, Du, D^{2}u)-u_{t} = f(x, t) $\end{document} with oblique boundary condition in a bounded \begin{document}$ C^{3} $\end{document} -domain.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom