z-logo
open-access-imgOpen Access
Existence and multiplicity of nontrivial solutions for a semilinear biharmonic equation with weight functions
Author(s) -
Xinbin Cheng,
Zhaosheng Feng,
Wei Lei
Publication year - 2021
Publication title -
discrete and continuous dynamical systems. series s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021078
Subject(s) - mathematics , biharmonic equation , regular polygon , multiplicity (mathematics) , combinatorics , mathematical analysis , geometry , boundary value problem
We consider the existence and multiplicity of nontrivial solutions for a semilinear biharmonic equation with the concave-convex nonlinearities \begin{document}$ f(x) |u|^{q-1} u $\end{document} and \begin{document}$ h(x) |u|^{p-1} u $\end{document} under certain conditions on \begin{document}$ f(x), \, h(x) $\end{document} , \begin{document}$ p $\end{document} and \begin{document}$ q $\end{document} . Applying the Nehari manifold method along with the fibering maps and the minimization method, we study the effect of \begin{document}$ f(x) $\end{document} and \begin{document}$ h(x) $\end{document} on the existence and multiplicity of nontrivial solutions for the semilinear biharmonic equation. When \begin{document}$ h(x)^+ \neq 0 $\end{document} , we prove that the equation has at least one nontrivial solution if \begin{document}$ f(x)^+ = 0 $\end{document} and that the equation has at least two nontrivial solutions if \begin{document}$ \int_\Omega |f^+|^r\, \text{d}x \in (0, \varLambda^r) $\end{document} , where \begin{document}$ r $\end{document} and \begin{document}$ \varLambda $\end{document} are explicit numbers. These results are novel, which improve and extend the existing results in the literature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here