Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line
Author(s) -
Abderrazak Chrifi,
Mostafa Abounouh,
Hassan Al Moatassime
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021030
Subject(s) - uniqueness , mathematics , dirac (video compression format) , nonlinear schrödinger equation , nonlinear system , line (geometry) , mathematical physics , mathematical analysis , schrödinger's cat , schrödinger equation , physics , quantum mechanics , geometry , neutrino
We consider a weakly damped cubic nonlinear Schrödinger equation with Dirac interaction defect in a half line of \begin{document}$ \mathbb{R} $\end{document} . Endowed with artificial boundary condition at the point \begin{document}$ x = 0 $\end{document} , we discuss the global existence and uniqueness of solution of this equation by using Faedo–Galerkin method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom