Open Access
Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method
Author(s) -
Said Taarabti
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021029
Subject(s) - combinatorics , sobolev space , omega , mathematics , physics , mathematical analysis , quantum mechanics
In this paper, we study the existence of positive solutions of the following equation\begin{document}$\begin{equation} (P_{\lambda}) \left\{\begin{array}{rclll}- \Delta_{p(x)} u+V(x)\vert u\vert^{p(x)-2}u & = & \lambda k(x) \vert u\vert^{\alpha(x)-2}u\\ &+& h(x) \vert u\vert^{\beta(x)-2}u&\mbox{ in }&\Omega\\u& = &0 &\mbox{ on }& \partial \Omega.\end{array}\right.\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right) \end{equation}$\end{document}The study of the problem \begin{document}$ (P_{\lambda}) $\end{document} needs generalized Lebesgue and Sobolev spaces. In this work, under suitable assumptions, we prove that some variational methods still work. We use them to prove the existence of positive solutions to the problem \begin{document}$ (P_{\lambda}) $\end{document} in \begin{document}$ W_{0}^{1,p(x)}(\Omega) $\end{document} .