z-logo
open-access-imgOpen Access
Existence and regularity results for a singular parabolic equations with degenerate coercivity
Author(s) -
Mounim El Ouardy,
Youssef El Hadfi,
Aziz Ifzarne
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2021012
Subject(s) - combinatorics , mathematics , bounded function , mathematical analysis
The aim of this paper is to prove existence and regularity of solutions for the following nonlinear singular parabolic problem\begin{document}$ \left\{ \begin{array}{lll} \dfrac{\partial u}{\partial t}-\mbox{div}\left( \dfrac{a(x,t,u,\nabla u)}{(1+|u|)^{\theta(p-1)}}\right) +g(x,t,u) = \dfrac{f}{u^{\gamma}} &\mbox{in}&\,\, Q,\\ u(x,0) = 0 &\mbox{on} & \Omega,\\ u = 0 &\mbox{on} &\,\, \Gamma. \end{array} \right. $\end{document}Here \begin{document}$ \Omega $\end{document} is a bounded open subset of \begin{document}$ I\!\!R^{N} (N>p\geq 2), T>0 $\end{document} and \begin{document}$ f $\end{document} is a non-negative function that belong to some Lebesgue space, \begin{document}$ f\in L^{m}(Q) $\end{document} , \begin{document}$ Q = \Omega \times(0,T) $\end{document} , \begin{document}$ \Gamma = \partial\Omega\times(0,T) $\end{document} , \begin{document}$ g(x,t,u) = |u|^{s-1}u $\end{document} , \begin{document}$ s\geq 1, $\end{document}\begin{document}$ 0\leq\theta< 1 $\end{document} and \begin{document}$ 0<\gamma<1. $\end{document}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom