z-logo
open-access-imgOpen Access
Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential
Author(s) -
Sitong Chen,
Wen-nian Huang,
Xianhua Tang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems. series s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2020339
Subject(s) - mathematics , combinatorics , state (computer science) , arithmetic , algorithm
In this paper, we consider the following Schrödinger-Poisson system\begin{document}$ \begin{equation*} \left\{ \begin{array}{ll}-\triangle u+u+K(x)\phi(x)u = a(x)|u|^{p-2}u, \ \ \ \ x\in { \mathbb{R}}^{3},\\-\triangle \phi = K(x)u^2, \ \ \ \ x\in { \mathbb{R}}^{3}, \end{array}\right. \end{equation*} $\end{document}where \begin{document}$ p\in [4,6) $\end{document} , \begin{document}$ a(x)\ge \lim_{|x|\to\infty}a(x) = a_{\infty}>0 $\end{document} and \begin{document}$ \lim_{|x|\to\infty}K(x) = 0 $\end{document} . Lack of any symmetry property of \begin{document}$ a $\end{document} and \begin{document}$ K $\end{document} , we present some new sufficient conditions to guarantee the existence of a positive ground state solution of above system. Our results extend and complement the ones of [G. Cerami, G. Vaira, J. Differential Equations 248 (2010)] in which \begin{document}$ p\in (4,6) $\end{document} , \begin{document}$ a $\end{document} and \begin{document}$ K $\end{document} need to satisfy additional integrability conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here