z-logo
open-access-imgOpen Access
Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production
Author(s) -
Yuya Tanaka,
Tomomi Yokota
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2022075
Subject(s) - nabla symbol , combinatorics , omega , mathematics , physics , quantum mechanics
This paper deals with finite-time blow-up of solutions to the quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production,\begin{document}$ \begin{align*} \begin{cases}u_t = \Delta u^m - \chi \nabla \cdot (u^\alpha \nabla v)+ \lambda u - \mu u^\kappa, \quad &x \in \Omega, \ t>0, \\0 = \Delta v - \overline{M_\ell}(t) + u^\ell, \quad &x \in \Omega, \ t>0, \end{cases} \end{align*} $\end{document}where \begin{document}$ \Omega: = B_R(0) \subset \mathbb{R}^n \ (n \in \mathbb{N}) $\end{document} be a ball with some \begin{document}$ R>0 $\end{document} and \begin{document}$ m\ge1 $\end{document} , \begin{document}$ \chi>0 $\end{document} , \begin{document}$ \alpha\ge1 $\end{document} , \begin{document}$ \lambda>0 $\end{document} , \begin{document}$ \mu>0 $\end{document} , \begin{document}$ \kappa>1 $\end{document} , \begin{document}$ \ell>0 $\end{document} as well as \begin{document}$ \overline{M_\ell}(t) $\end{document} is the average of \begin{document}$ u^\ell $\end{document} over \begin{document}$ \Omega $\end{document} . As to the corresponding system with nondegenerate diffusion, finite-time blow-up has been obtained under the condition that \begin{document}$ \alpha-\ell>\max\left\{\overline{m} +\frac{2}{n}\kappa, \kappa\right\} $\end{document} , where \begin{document}$ \overline{m}: = \max\{m,0\} $\end{document} in a previous paper [ 26 ], which is based a work by Fuest [ 7 ]. The purpose of this paper is to establish finite-time blow-up for the above degenerate chemotaxis system within a concept of weak solutions with a moment inequality leading to blow-up.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom