z-logo
open-access-imgOpen Access
Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals
Author(s) -
Miaoqing Tian,
Shujuan Wang,
Xia Xiao
Publication year - 2023
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2022071
Subject(s) - nabla symbol , homogeneous , combinatorics , bounded function , omega , mathematics , physics , mathematical analysis , quantum mechanics
This paper studies the quasilinear attraction-repulsion chemotaxis system of two-species with two chemicals \begin{document}$ u_{t} = \nabla\cdot( D_1(u)\nabla u)-\nabla\cdot( \Phi_1(u)\nabla v) $\end{document} , \begin{document}$ 0 = \Delta v-v+w^{\gamma_1} $\end{document} , \begin{document}$ w_{t} = \nabla\cdot( D_2(w)\nabla w)+\nabla\cdot( \Phi_2(w)\nabla z) $\end{document} , \begin{document}$ 0 = \Delta z-z+u^{\gamma_2} $\end{document} , subject to the homogeneous Neumann boundary conditions in a bounded domain \begin{document}$ \Omega\subset\mathbb{R}^N $\end{document} ( \begin{document}$ N\geq2 $\end{document} ) with smooth boundary, where \begin{document}$ \gamma_i>0 $\end{document} , \begin{document}$ D_i,\Phi_i\in C^2[0,+\infty) $\end{document} , \begin{document}$ D_i(s)\ge(s+1)^{p_i},\; \Phi_i(s)\ge0 $\end{document} for \begin{document}$ s\ge 0 $\end{document} , and \begin{document}$ \Phi_i(s)\le\chi_i s^{q_i} $\end{document} for \begin{document}$ s>s_0 $\end{document} with \begin{document}$ \chi_i>0 $\end{document} , \begin{document}$ p_i,q_i\in\mathbb{R} $\end{document}\begin{document}$ (i = 1,2) $\end{document} , \begin{document}$ s_0>1 $\end{document} . It is shown that if \begin{document}$ \gamma_1<\frac{2}{N} $\end{document} (or \begin{document}$ \gamma_2<\frac{4}{N} $\end{document} with \begin{document}$ \gamma_2\le1 $\end{document} ), the global boundedness of solutions are guaranteed by the self-diffusion dominance of \begin{document}$ u $\end{document} (or \begin{document}$ w $\end{document} ) with \begin{document}$ p_1>q_1+\gamma_1-1-\frac{2}{N} $\end{document} (or \begin{document}$ p_2>q_2+\gamma_2-1-\frac{4}{N} $\end{document} ); if \begin{document}$ p_j\ge q_i+\gamma_i- 1-\frac{2}{N} $\end{document} , \begin{document}$ i,j = 1,2 $\end{document} (i.e. the self-diffusion of \begin{document}$ u $\end{document} and \begin{document}$ w $\end{document} are dominant), then the solutions are globally bounded; in particular, different from the results of the single-species chemotaxis system, for the critical case \begin{document}$ p_j = q_i+\gamma_i- 1-\frac{2}{N} $\end{document} , the global boundedness of the solutions can be obtained.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here