The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator
Author(s) -
Qianqian Han,
Bo Deng,
XiaoSong Yang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2022043
Subject(s) - omega , mathematics , attractor , invariant (physics) , torus , periodic orbits , limit (mathematics) , combinatorics , physics , mathematical physics , mathematical analysis , geometry , quantum mechanics
In this paper, we prove the existence of \begin{document}$ \omega $\end{document} -limit set for a modified Nosé-Hoover oscillator. We also prove the existence of either an invariant torus or a stable periodic orbit of the oscillator. In addition, we show by numerical simulations the co-existence of both \begin{document}$ \alpha $\end{document} - and \begin{document}$ \omega $\end{document} -limit sets of various types of periodic orbits, invariant tori, and chaotic attractors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom