z-logo
open-access-imgOpen Access
On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production
Author(s) -
Runlin Hu,
Pan Zheng
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2022041
Subject(s) - nabla symbol , combinatorics , homogeneous , omega , bounded function , mathematics , physics , mathematical analysis , quantum mechanics
This paper deals with a quasilinear chemotaxis system with nonlinear signal production\begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} & u_t = \nabla\cdot(\phi(u)\nabla u)-\chi\nabla\cdot(\psi(u)\nabla v), & (x, t)\in \Omega\times (0, \infty), \\ & v_t = \Delta v-v+g(u), & (x, t)\in \Omega\times (0, \infty), \end{split} \right. \end{eqnarray*} $\end{document}under homogeneous Neumann boundary conditions in a smoothly bounded domain \begin{document}$ \Omega \subset \mathbb{R}^{n} $\end{document} , where \begin{document}$ \chi\in \mathbb{R} $\end{document} , the nonnegative nonlinearities \begin{document}$ \phi, \psi $\end{document} and \begin{document}$ g $\end{document} belong to \begin{document}$ C^{2}([0, \infty)) $\end{document} and satisfy \begin{document}$ \phi(u)\geq K_{0}(u+1)^{m}, \psi(u)\leq K_{1}u(u+1)^{\alpha-1} $\end{document} and \begin{document}$ g(u)\leq K_{2}(u+1)^{\beta} $\end{document} with some \begin{document}$ K_{0}, K_{1}, K_{2}, \beta>0 $\end{document} and \begin{document}$ \alpha, m\in\mathbb{R} $\end{document} .\begin{document}$ \bullet $\end{document} In the chemo-attractive setting, i.e. \begin{document}$ \chi>0 $\end{document} , assume that \begin{document}$ n\geq1 $\end{document} and \begin{document}$ \beta>1 $\end{document} , it is shown that the solution of the above system is global and uniformly bounded provided that \begin{document}$ \alpha+\beta-m<1+\dfrac{2}{n} $\end{document} and \begin{document}$ m >-\dfrac{2}{n} $\end{document} .\begin{document}$ \bullet $\end{document} In the chemo-repulsive setting, i.e. \begin{document}$ \chi<0 $\end{document} , assume that \begin{document}$ n\geq3 $\end{document} and \begin{document}$ g'(u) \geq0 $\end{document} , it is proved that the solution of the above system is also global and uniformly bounded if \begin{document}$ \alpha-m+\dfrac{n-2}{n+2}\beta<1 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom