Metric entropy for set-valued maps
Author(s) -
Kendry J. Vivas,
Vı́ctor F. Sirvent
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2022010
Subject(s) - mathematics , topological entropy , metric space , combinatorics , invariant (physics) , entropy (arrow of time) , discrete mathematics , physics , mathematical physics , quantum mechanics
In this article we define a notion of metric entropy for an invariant measure associated to a set-valued map \begin{document}$ F $\end{document} on a compact metric space \begin{document}$ X $\end{document} . Besides, we describe its main properties and prove the Half Variational Principle , which relates the metric entropy with the notion of topological entropy given in [ 13 ] for this class of maps.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom