z-logo
open-access-imgOpen Access
Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities
Author(s) -
Michael Winkler
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2022009
Subject(s) - nabla symbol , omega , combinatorics , mathematics , bounded function , arithmetic , physics , mathematical analysis , quantum mechanics
The chemotaxis system\begin{document}$ \begin{array}{l}\left\{ \begin{array}{l} u_t = \nabla \cdot \big( D(u) \nabla u \big) - \nabla \cdot \big( uS(x, u, v)\cdot \nabla v\big), \\ v_t = \Delta v -uv, \end{array} \right. \end{array} $\end{document}is considered in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} , \begin{document}$ n\ge 2 $\end{document} , with smooth boundary. It is shown that if \begin{document}$ D: [0, \infty) \to [0, \infty) $\end{document} and \begin{document}$ S: \overline{\Omega}\times [0, \infty)\times (0, \infty)\to \mathbb{R}^{n\times n} $\end{document} are suitably smooth functions satisfying\begin{document}$ \begin{array}{l}D(u) \ge k_D u^{m-1} \qquad {\rm{for\; all}}\; u\ge 0 \end{array} $\end{document}and\begin{document}$ \begin{array}{l}|S(x, u, v)| \le \frac{S_0(v)}{v^\alpha} \qquad {\rm{for\; all}}\; (x, u, v)\; \in \Omega\times (0, \infty)^2 \end{array} $\end{document}with some\begin{document}$ \begin{array}{l}m>\frac{3n-2}{2n} \qquad {\rm{and}}\;\alpha\in [0, 1), \end{array} $\end{document}and with some \begin{document}$ k_D>0 $\end{document} and nondecreasing \begin{document}$ S_0: (0, \infty)\to (0, \infty) $\end{document} , then for all suitably regular initial data a corresponding no-flux type initial-boundary value problem admits a global bounded weak solution which actually is smooth and classical if \begin{document}$ D(0)>0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom