z-logo
open-access-imgOpen Access
Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part
Author(s) -
Ahmed Y. Abdallah,
Taqwa M. Al-Khader,
Heba N. Abu-Shaab
Publication year - 2022
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2022006
Subject(s) - mathematics , attractor , combinatorics , lattice (music) , banach space , discrete mathematics , physics , mathematical analysis , acoustics
We study the existence of the uniform global attractor for a family of Klein-Gordon-Schrödingernon-autonomous infinite dimensional lattice dynamical systems with nonlinear part of the form \begin{document}$ f\left( u, v, t\right) $\end{document} , where we introduce a suitable Banach space of functions \begin{document}$ \mathcal{\mathcal{W}} $\end{document} and we assume that \begin{document}$ f\left( \cdot , \cdot , t\right) $\end{document} is an element of the hull of an almost periodic function \begin{document}$ f_{0}\left( \cdot , \cdot , t\right) $\end{document} with values in \begin{document}$ \mathcal{\mathcal{W}} $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom