z-logo
open-access-imgOpen Access
Asymptotic $ H^2$ regularity of a stochastic reaction-diffusion equation
Author(s) -
Hongyong Cui,
Yangrong Li
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021290
Subject(s) - combinatorics , mathematics , bounded function , mathematical analysis
In this paper we study the asymptotic dynamics for the weak solutions of the following stochastic reaction-diffusion equation defined on a bounded smooth domain \begin{document}$ {\mathcal{O}} \subset {\mathbb{R}}^N $\end{document} , \begin{document}$ N \leqslant 3 $\end{document} , with Dirichlet boundary condition:\begin{document}$ \begin{equation} \nonumber\begin{aligned} { {{\rm{d}}} u } +(-\Delta u + u ^3- \beta u ) {{\rm{d}}} t = g(x) {{\rm{d}}} t+h(x) {{\rm{d}}} W , \quad u|_{t = 0} = u_0\in H: = L^2( {\mathcal{O}}), \end{aligned} \end{equation} $\end{document}where \begin{document}$ \beta>0 $\end{document} , \begin{document}$ g\in H $\end{document} , and \begin{document}$ W $\end{document} a scalar and two-sided Wiener process with a regular perturbation intensity \begin{document}$ h $\end{document} . We first construct an \begin{document}$ H^2 $\end{document} tempered random absorbing set of the system, and then prove an \begin{document}$ (H,H^2) $\end{document} -smoothing property and conclude that the random attractor of the system is in fact a finite-dimensional tempered random set in \begin{document}$ H^2 $\end{document} and pullback attracts tempered random sets in \begin{document}$ H $\end{document} under the topology of \begin{document}$ H^2 $\end{document} . The main technique we shall employ is comparing the regularity of the stochastic equation to that of the corresponding deterministic equation for which the asymptotic \begin{document}$ H^2 $\end{document} regularity is already known.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom