Stability of positive steady-state solutions to a time-delayed system with some applications
Author(s) -
Shihe Xu,
Fangwei Zhang,
Meng Bai
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021286
Subject(s) - mathematics , combinatorics , arithmetic
In this paper, we study a general nonlinear retarded system:1 \begin{document}$ \begin{equation} y'(t) = a(t)F(y(t),y(t-\tau)), \; \; t\geq 0, \end{equation} $\end{document}where \begin{document}$ \tau>0 $\end{document} is a constant, \begin{document}$ a(t) $\end{document} is a positive value function defined on \begin{document}$ [0,\infty) $\end{document} , \begin{document}$ F(y,z) $\end{document} is continuous in \begin{document}$ \mathscr{D} = \mathbb{R}_+^2 $\end{document} , where \begin{document}$ \mathbb{R_+} = (0,+\infty) $\end{document} . Sufficient conditions for stability of the unique positive equilibrium are established. Our results show that if \begin{document}$ F_z(y,z)>0 $\end{document} for \begin{document}$ y,z\in \mathbb{R_+} $\end{document} , then the unique positive equilibrium of (1) which denoted by \begin{document}$ \bar{y} $\end{document} is globally stable for any positive initial value and all \begin{document}$ \tau>0 $\end{document} ; if \begin{document}$ F(y,z) $\end{document} is decreasing in \begin{document}$ y $\end{document} , then \begin{document}$ \bar{y} $\end{document} is globally stable for small \begin{document}$ \tau $\end{document} . Some applications are given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom