Attractors for a class of perturbed nonclassical diffusion equations with memory
Author(s) -
Jianbo Yuan,
Shixuan Zhang,
Yongqin Xie,
Jiangwei Zhang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021261
Subject(s) - mathematics , attractor , type (biology) , polynomial , diffusion , pure mathematics , mathematical analysis , physics , quantum mechanics , ecology , biology
In this paper, using a new operator decomposition method (or framework), we establish the existence, regularity and upper semi-continuity of global attractors for a perturbed nonclassical diffusion equation with fading memory. It is worth noting that we get the same conclusion in [ 7 , 14 ] as the perturbed parameters \begin{document}$ \nu = 0 $\end{document} , but the nonlinearity \begin{document}$ f $\end{document} satisfies arbitrary polynomial growth condition rather than critical exponential growth condition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom