z-logo
open-access-imgOpen Access
The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term
Author(s) -
Xudong Luo,
Qiaozhen Ma
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021253
Subject(s) - mathematics , omega , combinatorics , arithmetic , physics , quantum mechanics
We investigate the well-posedness and longtime dynamics of fractional damping wave equation whose coefficient \begin{document}$ \varepsilon $\end{document} depends explicitly on time. First of all, when \begin{document}$ 1\leq p\leq p^{\ast\ast} = \frac{N+2}{N-2}\; (N\geq3) $\end{document} , we obtain existence of solution for the fractional damping wave equation with time-dependent decay coefficient in \begin{document}$ H_{0}^{1}(\Omega)\times L^{2}(\Omega) $\end{document} . Furthermore, when \begin{document}$ 1\leq p<p^{*} = \frac{N+4\alpha}{N-2} $\end{document} , \begin{document}$ u_{t} $\end{document} is proved to be of higher regularity in \begin{document}$ H^{1-\alpha}\; (t>\tau) $\end{document} and show that the solution is quasi-stable in weaker space \begin{document}$ H^{1-\alpha}\times H^{-\alpha} $\end{document} . Finally, we get the existence and regularity of time-dependent attractor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom