
The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term
Author(s) -
Xudong Luo,
Qingwei Ma
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021253
Subject(s) - mathematics , omega , combinatorics , arithmetic , physics , quantum mechanics
We investigate the well-posedness and longtime dynamics of fractional damping wave equation whose coefficient \begin{document}$ \varepsilon $\end{document} depends explicitly on time. First of all, when \begin{document}$ 1\leq p\leq p^{\ast\ast} = \frac{N+2}{N-2}\; (N\geq3) $\end{document} , we obtain existence of solution for the fractional damping wave equation with time-dependent decay coefficient in \begin{document}$ H_{0}^{1}(\Omega)\times L^{2}(\Omega) $\end{document} . Furthermore, when \begin{document}$ 1\leq p<p^{*} = \frac{N+4\alpha}{N-2} $\end{document} , \begin{document}$ u_{t} $\end{document} is proved to be of higher regularity in \begin{document}$ H^{1-\alpha}\; (t>\tau) $\end{document} and show that the solution is quasi-stable in weaker space \begin{document}$ H^{1-\alpha}\times H^{-\alpha} $\end{document} . Finally, we get the existence and regularity of time-dependent attractor.