
Crop - Weed interactive dynamics in the presence of herbicides: Mathematical modeling and analysis
Author(s) -
Abhinav Tandon
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021244
Subject(s) - mathematics , limit cycle , hopf bifurcation , transcritical bifurcation , biological applications of bifurcation theory , saddle node bifurcation , nonlinear system , bifurcation , limit (mathematics) , physics , mathematical analysis , quantum mechanics
In the present study, a nonlinear model is formulated to demonstrate crop - weed interactions, when they both grow together on agricultural land and compete with each other for the same resources like sunlight, water, nutrients etc., under the aegis of herbicides. The developed model is mathematically analyzed through qualitative theory of differential equations to demonstrate rich dynamical characteristics of the system, which are important to be known for maximizing crop yield. The qualitative results reveal that the system not only exhibits stability of more than one equilibrium states, but also undergoes saddle - node, transcritical and Hopf bifurcations, however, depending on parametric combinations. The results of saddle - node and transcritical bifurcations help to plan strategies for maximum crop yield by putting check over the parameters responsible for the depletion of crops due to their interaction with weeds and herbicides. Hopf - bifurcation shows bifurcation of limit cycle through Hopf - bifurcation threshold, which supports that crop - weed interactions are not always of regular type, but they can also be periodic.