z-logo
open-access-imgOpen Access
Large time behavior in a predator-prey system with pursuit-evasion interaction
Author(s) -
Dayong Qi,
Yuanyuan Ke
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021240
Subject(s) - nabla symbol , combinatorics , mathematics , arithmetic , physics , omega , quantum mechanics
This work considers a pursuit-evasion model\begin{document}$\begin{equation} \left\{ \begin{split} &u_t = \Delta u-\chi\nabla\cdot(u\nabla w)+u(\mu-u+av),\\ &v_t = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda-v-bu),\\ &w_t = \Delta w-w+v,\\ &z_t = \Delta z-z+u\\ \end{split} \right. \ \ \ \ \ (1) \end{equation}$\end{document} with positive parameters \begin{document}$ \chi $\end{document} , \begin{document}$ \xi $\end{document} , \begin{document}$ \mu $\end{document} , \begin{document}$ \lambda $\end{document} , \begin{document}$ a $\end{document} and \begin{document}$ b $\end{document} in a bounded domain \begin{document}$ \Omega\subset\mathbb{R}^N $\end{document} ( \begin{document}$ N $\end{document} is the dimension of the space) with smooth boundary. We prove that if \begin{document}$ a<2 $\end{document} and \begin{document}$ \frac{N(2-a)}{2(C_{\frac{N}{2}+1})^{\frac{1}{\frac{N}{2}+1}}(N-2)_+}>\max\{\chi,\xi\} $\end{document} , (1) possesses a global bounded classical solution with a positive constant \begin{document}$ C_{\frac{N}{2}+1} $\end{document} corresponding to the maximal Sobolev regularity. Moreover, it is shown that if \begin{document}$ b\mu<\lambda $\end{document} , the solution ( \begin{document}$ u,v,w,z $\end{document} ) converges to a spatially homogeneous coexistence state with respect to the norm in \begin{document}$ L^\infty(\Omega) $\end{document} in the large time limit under some exact smallness conditions on \begin{document}$ \chi $\end{document} and \begin{document}$ \xi $\end{document} . If \begin{document}$ b\mu>\lambda $\end{document} , the solution converges to ( \begin{document}$ \mu,0,0,\mu $\end{document} ) with respect to the norm in \begin{document}$ L^\infty(\Omega) $\end{document} as \begin{document}$ t\rightarrow \infty $\end{document} under some smallness assumption on \begin{document}$ \chi $\end{document} with arbitrary \begin{document}$ \xi $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom