Vortex Condensation in General U(1)×U(1) Abelian Chern-Simons Model on a flat torus
Author(s) -
Hsin-Yuan Huang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021234
Subject(s) - mathematics , abelian group , combinatorics , physics
In this paper, we study an elliptic system arising from the U(1) \begin{document}$ \times $\end{document} U(1) Abelian Chern-Simons Model[ 25 , 37 ] of the form\begin{document}$ \begin{equation} \left\{\begin{split} \Delta u = &\lambda \left(a(b-a)e^{u}-b(b-a)e^{v}+a^2e^{2u} -abe^{2v}+b(b-a)e^{u+v}\right)\\ & +4\pi \sum\limits_{j = 1}^{k_1}m_j\delta_{p_j}, \\ \Delta v = &\lambda \left(-b(b-a)e^{u}+a(b-a)e^{v}-abe^{2u} +a^2e^{2v}+b(b-a)e^{u+v}\right)\\ & +4\pi \sum\limits_{j = 1}^{k_2}n_j\delta_{q_j}, \end{split}\right. \quad\quad\quad\quad (1)\end{equation} $\end{document}which are defined on a parallelogram \begin{document}$ \Omega $\end{document} in \begin{document}$ \mathbb{R}^2 $\end{document} with doubly periodic boundary conditions. Here, \begin{document}$ a $\end{document} and \begin{document}$ b $\end{document} are interaction constants, \begin{document}$ \lambda>0 $\end{document} is related to coupling constant, \begin{document}$ m_j>0(j = 1,\cdots,k_1) $\end{document} , \begin{document}$ n_j>0(j = 1,\cdots,k_2) $\end{document} , \begin{document}$ \delta_{p} $\end{document} is the Dirac measure, \begin{document}$ p $\end{document} is called vortex point. Concerning the existence results of this system over \begin{document}$ \Omega $\end{document} , only the cases \begin{document}$ (a,b) = (0,1) $\end{document} [ 28 ] and \begin{document}$ a>b>0 $\end{document} [ 14 ] were studied in the literature. The solvability of this system (1) is still an open problem as regards other parameters \begin{document}$ (a,b) $\end{document} . We show that the system (1) admits topological solutions provided \begin{document}$ \lambda $\end{document} is large and \begin{document}$ b>a>0 $\end{document} Our arguments are based on a iteration scheme and variational formulation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom