Global weak solutions to the generalized mCH equation via characteristics
Author(s) -
Fanqin Zeng,
Yu Gao,
Xiaoping Xue
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021229
Subject(s) - mathematics , lagrangian , combinatorics , arithmetic , mathematical physics
In this paper, we study the generalized modified Camassa-Holm (gmCH) equation via characteristics. We first change the gmCH equation for unknowns \begin{document}$ (u,m) $\end{document} into its Lagrangian dynamics for characteristics \begin{document}$ X(\xi,t) $\end{document} , where \begin{document}$ \xi\in\mathbb{R} $\end{document} is the Lagrangian label. When \begin{document}$ X_\xi(\xi,t)>0 $\end{document} , we use the solutions to the Lagrangian dynamics to recover the classical solutions with \begin{document}$ m(\cdot,t)\in C_0^k(\mathbb{R}) $\end{document} ( \begin{document}$ k\in\mathbb{N},\; \; k\geq1 $\end{document} ) to the gmCH equation. The classical solutions \begin{document}$ (u,m) $\end{document} to the gmCH equation will blow up if \begin{document}$ \inf_{\xi\in\mathbb{R}}X_\xi(\cdot,T_{\max}) = 0 $\end{document} for some \begin{document}$ T_{\max}>0 $\end{document} . After the blow-up time \begin{document}$ T_{\max} $\end{document} , we use a double mollification method to mollify the Lagrangian dynamics and construct global weak solutions (with \begin{document}$ m $\end{document} in space-time Radon measure space) to the gmCH equation by some space-time BV compactness arguments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom