z-logo
open-access-imgOpen Access
Meromorphic integrability of the Hamiltonian systems with homogeneous potentials of degree -4
Author(s) -
Jaume Llibre,
Yuzhou Tian
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021228
Subject(s) - homogeneous , mathematics , combinatorics , arithmetic
We characterize the meromorphic Liouville integrability of the Hamiltonian systems with Hamiltonian \begin{document}$ H = \left(p_1^2+p_2^2\right)/2+1/P(q_1, q_2) $\end{document} , being \begin{document}$ P(q_1, q_2) $\end{document} a homogeneous polynomial of degree \begin{document}$ 4 $\end{document} of one of the following forms \begin{document}$ \pm q_1^4 $\end{document} , \begin{document}$ 4q_1^3q_2 $\end{document} , \begin{document}$ \pm 6q_1^2q_2^2 $\end{document} , \begin{document}$ \pm \left(q_1^2+q_2^2\right)^2 $\end{document} , \begin{document}$ \pm q_2^2\left(6q_1^2-q_2^2\right) $\end{document} , \begin{document}$ \pm q_2^2\left(6q_1^2+q_2^2\right) $\end{document} , \begin{document}$ q_1^4+6\mu q_1^2q_2^2-q_2^4 $\end{document} , \begin{document}$ -q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document} with \begin{document}$ \mu>-1/3 $\end{document} and \begin{document}$ \mu\neq 1/3 $\end{document} , and \begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document} with \begin{document}$ \mu \neq \pm 1/3 $\end{document} . We note that any homogeneous polynomial of degree \begin{document}$ 4 $\end{document} after a linear change of variables and a rescaling can be written as one of the previous polynomials. We remark that for the polynomial \begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document} when \begin{document}$ \mu\in\left\{-5/3, -2/3\right\} $\end{document} we only can prove that it has no a polynomial first integral.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom