z-logo
open-access-imgOpen Access
Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$
Author(s) -
JinMyong An,
JinMyong Kim,
KyuSong Chae
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021221
Subject(s) - combinatorics , mathematics , arithmetic
We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger (INLS) equation\begin{document}$ iu_{t} +\Delta u = |x|^{-b} f(u), \;u(0)\in H^{s} (\mathbb R^{n} ), $\end{document}where \begin{document}$ n\in \mathbb N $\end{document} , \begin{document}$ 0<s<\min \{ n, \; 1+n/2\} $\end{document} , \begin{document}$ 0<b<\min \{ 2, \;n-s, \;1+\frac{n-2s}{2} \} $\end{document} and \begin{document}$ f(u) $\end{document} is a nonlinear function that behaves like \begin{document}$ \lambda |u|^{\sigma } u $\end{document} with \begin{document}$ \sigma>0 $\end{document} and \begin{document}$ \lambda \in \mathbb C $\end{document} . Recently, the authors in [ 1 ] proved the local existence of solutions in \begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document} with \begin{document}$ 0\le s<\min \{ n, \; 1+n/2\} $\end{document} . However even though the solution is constructed by a fixed point technique, continuous dependence in the standard sense in \begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document} with \begin{document}$ 0< s<\min \{ n, \; 1+n/2\} $\end{document} doesn't follow from the contraction mapping argument. In this paper, we show that the solution depends continuously on the initial data in the standard sense in \begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document} , i.e. in the sense that the local solution flow is continuous \begin{document}$ H^{s}(\mathbb R^{n} )\to H^{s}(\mathbb R^{n} ) $\end{document} , if \begin{document}$ \sigma $\end{document} satisfies certain assumptions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom