z-logo
open-access-imgOpen Access
Boundedness and asymptotic stability in a two-species predator-prey chemotaxis model
Author(s) -
Yu Ma,
Chunlai Mu,
Shuyan Qiu
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021218
Subject(s) - nabla symbol , combinatorics , omega , mathematics , bounded function , physics , mathematical analysis , quantum mechanics
This work deals with a Neumann initial-boundary value problem for a two-species predator-prey chemotaxis system\begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_t = d_1\Delta u-\chi\nabla\cdot(u\nabla w)+u(\lambda-u+av),\quad &x\in \Omega,\quad t>0,\\ v_t = d_2\Delta v+\xi\nabla\cdot(v\nabla w)+v(\mu-v-bu),\quad &x\in \Omega,\quad t>0,\\ 0 = d_3\Delta w-\alpha w+\beta_1 u+ \beta_2 v,\quad &x\in\Omega,\quad t>0,\\ \end{array} \right. \end{eqnarray*} $\end{document}in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^n \,\,(n = 2,3) $\end{document} with smooth boundary \begin{document}$ \partial\Omega $\end{document} , where the parameters \begin{document}$ d_1, d_2, d_3,\chi, \xi,\lambda,\mu,\alpha,\beta_1,\beta_2, a, b $\end{document} are positive. It is shown that for any appropriate regular initial date \begin{document}$ u_0 $\end{document} , \begin{document}$ v_0 $\end{document} , the corresponding system possesses a global bounded classical solution in \begin{document}$ n = 2 $\end{document} , and also in \begin{document}$ n = 3 $\end{document} for \begin{document}$ \chi $\end{document} being sufficiently small. Moreover, by constructing some suitable functionals, it is proved that if \begin{document}$ b\lambda<\mu $\end{document} and the parameters \begin{document}$ \chi $\end{document} and \begin{document}$ \xi $\end{document} are sufficiently small, then the solution \begin{document}$ (u,v,w) $\end{document} of this system converges to \begin{document}$ (\frac{\lambda+a\mu}{1+ab}, \frac{\mu-b\lambda}{1+ab}, \frac{\beta_1(\lambda+a\mu)+\beta_2(\mu-b\lambda)}{\alpha(1+ab)}) $\end{document} exponentially as \begin{document}$ t\rightarrow \infty $\end{document} ; if \begin{document}$ b\lambda\geq \mu $\end{document} and \begin{document}$ \chi $\end{document} is sufficiently small and \begin{document}$ \xi $\end{document} is arbitrary, then the solution \begin{document}$ (u,v,w) $\end{document} converges to \begin{document}$ (\lambda,0,\frac{\beta_1\lambda}{\alpha}) $\end{document} with exponential decay when \begin{document}$ b\lambda> \mu $\end{document} , and with algebraic decay when \begin{document}$ b\lambda = \mu $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom