z-logo
open-access-imgOpen Access
Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity
Author(s) -
Guofa Li,
Yisheng Huang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021214
Subject(s) - combinatorics , mathematics , order (exchange) , arithmetic , economics , finance
In this paper, we study the existence of positive solutions for the following quasilinear Schrödinger equations\begin{document}$ \begin{equation*} -\triangle u+V(x)u+\frac{\kappa}{2}[\triangle|u|^{2}]u = \lambda K(x)h(u)+\mu|u|^{2^*-2}u, \quad x\in\mathbb{R}^{N}, \end{equation*} $\end{document}where \begin{document}$ \kappa>0 $\end{document} , \begin{document}$ \lambda>0, \mu>0, h\in C(\mathbb{R}, \mathbb{R}) $\end{document} is superlinear at infinity, the potentials \begin{document}$ V(x) $\end{document} and \begin{document}$ K(x) $\end{document} are vanishing at infinity. In order to discuss the existence of solutions we apply minimax techniques together with careful \begin{document}$ L^{\infty} $\end{document} -estimates. For the subcritical case ( \begin{document}$ \mu = 0 $\end{document} ) we can deal with large \begin{document}$ \kappa>0 $\end{document} . For the critical case we treat that \begin{document}$ \kappa>0 $\end{document} is small.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom