z-logo
open-access-imgOpen Access
Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity
Author(s) -
Guofa Li,
Yisheng Huang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021214
Subject(s) - combinatorics , mathematics , order (exchange) , arithmetic , economics , finance
In this paper, we study the existence of positive solutions for the following quasilinear Schrödinger equations\begin{document}$ \begin{equation*} -\triangle u+V(x)u+\frac{\kappa}{2}[\triangle|u|^{2}]u = \lambda K(x)h(u)+\mu|u|^{2^*-2}u, \quad x\in\mathbb{R}^{N}, \end{equation*} $\end{document}where \begin{document}$ \kappa>0 $\end{document} , \begin{document}$ \lambda>0, \mu>0, h\in C(\mathbb{R}, \mathbb{R}) $\end{document} is superlinear at infinity, the potentials \begin{document}$ V(x) $\end{document} and \begin{document}$ K(x) $\end{document} are vanishing at infinity. In order to discuss the existence of solutions we apply minimax techniques together with careful \begin{document}$ L^{\infty} $\end{document} -estimates. For the subcritical case ( \begin{document}$ \mu = 0 $\end{document} ) we can deal with large \begin{document}$ \kappa>0 $\end{document} . For the critical case we treat that \begin{document}$ \kappa>0 $\end{document} is small.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here