z-logo
open-access-imgOpen Access
A quasilinear parabolic-parabolic chemotaxis model with logistic source and singular sensitivity
Author(s) -
Jie Zhao
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021193
Subject(s) - nabla symbol , combinatorics , omega , homogeneous , mathematics , bounded function , regular polygon , physics , geometry , mathematical analysis , quantum mechanics
This paper deals with the dynamical properties of the quasilinear parabolic-parabolic chemotaxis system\begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_{t} = \nabla\cdot(D(u)\nabla u)-\chi\nabla\cdot(\frac{u}{v} \nabla v)+\mu u- \mu u^{2}, \, \, \, &x\in\Omega, \, \, \, t>0, \\ v_{t} = \Delta v-v+u, &x\in\Omega, \, \, \, t>0, \end{array} \right. \end{eqnarray*} $\end{document}under homogeneous Neumann boundary conditions in a convex bounded domain \begin{document}$ \Omega\subset\mathbb{R}^{n} $\end{document} , \begin{document}$ n\geq2 $\end{document} , with smooth boundary. \begin{document}$ \chi>0 $\end{document} and \begin{document}$ \mu>0 $\end{document} , \begin{document}$ D(u) $\end{document} is supposed to satisfy the behind properties\begin{document}$ \begin{equation*} \begin{split} D(u)\geq (u+1)^{\alpha} \, \, \, \text{with}\, \, \, \alpha>0. \end{split} \end{equation*} $\end{document}It is shown that there is a positive constant \begin{document}$ m_{*} $\end{document} such that\begin{document}$ \begin{equation*} \begin{split} \int_{\Omega}u\geq m_{*} \end{split} \end{equation*} $\end{document}for all \begin{document}$ t\geq0 $\end{document} . Moreover, we prove that the solution is globally bounded. Finally, it is asserted that the solution exponentially converges to the constant stationary solution \begin{document}$ (1, 1) $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom