z-logo
open-access-imgOpen Access
Stable transition layer induced by degeneracy of the spatial inhomogeneities in the Allen-Cahn problem
Author(s) -
Maicon Sônego,
Arnaldo Simal do Nascimento
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021185
Subject(s) - combinatorics , mathematics
In this article we consider a singularly perturbed Allen-Cahn problem \begin{document}$ u_t = \epsilon^2(a^2u_x)_x+b^2(u-u^3) $\end{document} , for \begin{document}$ (x,t)\in (0,1)\times\mathbb{R}^+ $\end{document} , supplied with no-flux boundary condition. The novelty here lies in the fact that the nonnegative spatial inhomogeneities \begin{document}$ a(\cdot) $\end{document} and \begin{document}$ b(\cdot) $\end{document} are allowed to vanish at some points in \begin{document}$ (0,1) $\end{document} . Using the variational concept of \begin{document}$ \Gamma $\end{document} -convergence we prove that, for \begin{document}$ \epsilon $\end{document} small, such degeneracy of \begin{document}$ a(\cdot) $\end{document} and \begin{document}$ b(\cdot) $\end{document} induces the existence of stable stationary solutions which develop internal transition layer as \begin{document}$ \epsilon\to 0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here