z-logo
open-access-imgOpen Access
Stable transition layer induced by degeneracy of the spatial inhomogeneities in the Allen-Cahn problem
Author(s) -
Maicon Sônego,
Arnaldo Simal do Nascimento
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021185
Subject(s) - combinatorics , mathematics
In this article we consider a singularly perturbed Allen-Cahn problem \begin{document}$ u_t = \epsilon^2(a^2u_x)_x+b^2(u-u^3) $\end{document} , for \begin{document}$ (x,t)\in (0,1)\times\mathbb{R}^+ $\end{document} , supplied with no-flux boundary condition. The novelty here lies in the fact that the nonnegative spatial inhomogeneities \begin{document}$ a(\cdot) $\end{document} and \begin{document}$ b(\cdot) $\end{document} are allowed to vanish at some points in \begin{document}$ (0,1) $\end{document} . Using the variational concept of \begin{document}$ \Gamma $\end{document} -convergence we prove that, for \begin{document}$ \epsilon $\end{document} small, such degeneracy of \begin{document}$ a(\cdot) $\end{document} and \begin{document}$ b(\cdot) $\end{document} induces the existence of stable stationary solutions which develop internal transition layer as \begin{document}$ \epsilon\to 0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom