
On <i>q</i>-deformed logistic maps
Author(s) -
José S. Cánovas
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021162
Subject(s) - mathematics , combinatorics
We consider the logistic family \begin{document}$ f_{a} $\end{document} and a family of homeomorphisms \begin{document}$ \phi _{q} $\end{document} . The \begin{document}$ q $\end{document} -deformed system is given by the composition map \begin{document}$ f_{a}\circ \phi _{q} $\end{document} . We study when this system has non zero fixed points which are LAS and GAS. We also give an alternative approach to study the dynamics of the \begin{document}$ q $\end{document} -deformed system with special emphasis on the so-called Parrondo's paradox finding parameter values \begin{document}$ a $\end{document} for which \begin{document}$ f_{a} $\end{document} is simple while \begin{document}$ f_{a}\circ \phi _{q} $\end{document} is dynamically complicated. We explore the dynamics when several \begin{document}$ q $\end{document} -deformations are applied.