z-logo
open-access-imgOpen Access
On <i>q</i>-deformed logistic maps
Author(s) -
José S. Cánovas
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021162
Subject(s) - mathematics , combinatorics
We consider the logistic family \begin{document}$ f_{a} $\end{document} and a family of homeomorphisms \begin{document}$ \phi _{q} $\end{document} . The \begin{document}$ q $\end{document} -deformed system is given by the composition map \begin{document}$ f_{a}\circ \phi _{q} $\end{document} . We study when this system has non zero fixed points which are LAS and GAS. We also give an alternative approach to study the dynamics of the \begin{document}$ q $\end{document} -deformed system with special emphasis on the so-called Parrondo's paradox finding parameter values \begin{document}$ a $\end{document} for which \begin{document}$ f_{a} $\end{document} is simple while \begin{document}$ f_{a}\circ \phi _{q} $\end{document} is dynamically complicated. We explore the dynamics when several \begin{document}$ q $\end{document} -deformations are applied.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom