z-logo
open-access-imgOpen Access
Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient
Author(s) -
Xuan Liu,
Ting Zhang
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021156
Subject(s) - mathematics , order (exchange) , combinatorics , arithmetic , economics , finance
We consider the fourth-order Schrödinger equation\begin{document}$ i\partial_tu+\Delta^2 u+\mu\Delta u+\lambda|u|^\alpha u = 0, $\end{document}where \begin{document}$ \alpha>0, \mu = \pm1 $\end{document} or \begin{document}$ 0 $\end{document} and \begin{document}$ \lambda\in\mathbb{C} $\end{document} . Firstly, we prove local well-posedness in \begin{document}$ H^4\left( {\mathbb R}^N\right) $\end{document} in both \begin{document}$ H^4 $\end{document} subcritical and critical case: \begin{document}$ \alpha>0 $\end{document} , \begin{document}$ (N-8)\alpha\leq8 $\end{document} . Then, for any given compact set \begin{document}$ K\subset\mathbb{R}^N $\end{document} , we construct \begin{document}$ H^4( {\mathbb R}^N) $\end{document} solutions that are defined on \begin{document}$ (-T, 0) $\end{document} for some \begin{document}$ T>0 $\end{document} , and blow up exactly on \begin{document}$ K $\end{document} at \begin{document}$ t = 0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom