z-logo
open-access-imgOpen Access
Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient
Author(s) -
Xuan Li,
Ting Zhang
Publication year - 2022
Publication title -
discrete and continuous dynamical systems. series b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021156
Subject(s) - mathematics , order (exchange) , combinatorics , arithmetic , economics , finance
We consider the fourth-order Schrödinger equation\begin{document}$ i\partial_tu+\Delta^2 u+\mu\Delta u+\lambda|u|^\alpha u = 0, $\end{document}where \begin{document}$ \alpha>0, \mu = \pm1 $\end{document} or \begin{document}$ 0 $\end{document} and \begin{document}$ \lambda\in\mathbb{C} $\end{document} . Firstly, we prove local well-posedness in \begin{document}$ H^4\left( {\mathbb R}^N\right) $\end{document} in both \begin{document}$ H^4 $\end{document} subcritical and critical case: \begin{document}$ \alpha>0 $\end{document} , \begin{document}$ (N-8)\alpha\leq8 $\end{document} . Then, for any given compact set \begin{document}$ K\subset\mathbb{R}^N $\end{document} , we construct \begin{document}$ H^4( {\mathbb R}^N) $\end{document} solutions that are defined on \begin{document}$ (-T, 0) $\end{document} for some \begin{document}$ T>0 $\end{document} , and blow up exactly on \begin{document}$ K $\end{document} at \begin{document}$ t = 0 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here