The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian
Author(s) -
Fang Liu
Publication year - 2021
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2021155
Subject(s) - combinatorics , mathematics , homogeneous , omega , arithmetic , physics , quantum mechanics
In this paper, we investigate a weighted Dirichlet eigenvalue problem for a class of degenerate operators related to the \begin{document}$ h $\end{document} degree homogeneous \begin{document}$ p $\end{document} -Laplacian\begin{document}$ \begin{equation} \nonumber \left \{ \begin{array}{ll} {|Du|^{h-1}}\Delta_p^N u+ \lambda a(x)|u|^{h-1}u = 0, \quad\quad \rm{in}\quad \Omega, \\ u = 0, \quad\quad \quad \quad \rm{on} \quad\partial\Omega. \end{array}\right. \end{equation} $\end{document}Here \begin{document}$ a(x) $\end{document} is a positive continuous bounded function in the closure of \begin{document}$ \Omega\subset \mathbb{R}^n(n\geq 2), $\end{document}\begin{document}$ h>1, $\end{document}\begin{document}$ 2< p<\infty, $\end{document} and \begin{document}$ \Delta_p^N u = \frac{1}{p}|Du|^{2-p} {\rm div}\left(|Du|^{p-2}Du\right) $\end{document} is the normalized version of the \begin{document}$ p $\end{document} -Laplacian arising from a stochastic game named Tug-of-War with noise. We prove the existence of the principal eigenvalue \begin{document}$ \lambda_\Omega $\end{document} , which is positive and has a corresponding positive eigenfunction for \begin{document}$ p>n $\end{document} . The method is based on the maximum principle and approach analysis to the weighted eigenvalue problem. When a parameter \begin{document}$ \lambda<\lambda_\Omega $\end{document} , we establish some existence and uniqueness results related to this problem. During this procedure, we also prove some regularity estimates including Hölder continuity and Harnack inequality.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom